Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A major challenge in understanding the oceanic carbon cycle is estimating the sinking flux of organic carbon exiting the sunlit surface ocean, termed carbon export. Existing algorithms derive carbon export from satellite ocean color, but neglect spatiotemporal offsets created by the temporal lag between production and export, and by horizontal advection. Here, we show that a Lagrangian “growth‐advection” (GA) satellite‐derived product, where plankton succession and export are mapped onto surface oceanic circulation following coastal upwelling, succeeds in representing in situ export off the California coast. In situ export is best represented by a combination of GA export (proportional to modeled zooplankton) and export derived from ocean color (related to local phytoplankton). Both products also correlate with a long‐term time series of abyssal carbon flux. These results provide insights on export spatiotemporal patterns and a path toward improving satellite‐derived carbon export in the California Current and beyond.more » « lessFree, publicly-accessible full text available April 16, 2026
-
Abstract We investigated nutrient patterns and their relationship to vertical carbon export using results from 38 Lagrangian experiments in the California Current Ecosystem. The dominant mode of variability reflected onshore‐offshore nutrient gradients. A secondary mode of variability was correlated with silica excess and dissolved iron and likely reflects regional patterns of iron limitation. The biological carbon pump was enhanced in high‐nutrient and Fe‐stressed regions. Patterns in the nutrient landscape proved to be better predictors of the vertical flux of sinking particles than contemporaneous measurements of net primary production. Our results suggest an important role for Fe‐stressed diatoms in vertical carbon flux. They also suggest that either preferential recycling of N or non‐Redfieldian nutrient uptake by diatoms may lead to high PO43−:NO3−and Si(OH)4:NO3−ratios, following export of P‐ and Si‐enriched organic matter. Increased export following Fe stress may partially explain inverse relationships between net primary productivity and export efficiency.more » « less
An official website of the United States government
